
A tenant is the main construct of
a SaaS environment and as a SaaS
provider building an application, the
onboarding needs to be a fluid and
streamlined process. The application
would often be architected to support
a range of market segments, provide
separate pricing and experiences to
a wide range of customer profiles,
often referred to as tiers. These
tiering models can influence the
cost, operations, management and
reliability footprint of a SaaS solution.

In order to introduce new tenants
to their environment, it requires
an effortless model with multiple
components to successfully provision
and combine all the elements. During
this process it would involve a number

of components to successfully provision
and configure all the necessary areas
to create a new tenant. This will be
initiated either directly by the tenants or
as part of a provider-managed process.

Having an automated, low-friction
onboarding process is key to allowing
SaaS providers to have a scalable
mechanism that is repeatable
for introducing new tenants.
Implementing automated scripts that
provision all the elements, providing
a self-service user experience and
single automated process to onboard
tenants are all vital to create a fluid
onboarding process. In order to do
this, we would look at using serverless
services within AWS and we can break
this down into a few key areas.

SEAMLESS TENANT ONBOARDING USING AWS

GET STARTED TODAY E info@rebura.com W www.rebura.com Follow us on LinkedIn

1. REGISTRATION
Tenants register themselves using the sign-up web application, the flow
of this would vary slightly based on the tier the tenant selects during the
sign-up process. Once the tenant provides their details, the registration
service would examine this and flag it to be onboarded. The registration
would generate a tenant id which will be used in the management and
provisioning. The user will send the request with the new tenant payload
(tenant name, description and ID) in a JSON format to a REST API hosted
by Amazon API Gateway which processes the request and forwards it to
the backed Lambda function for tenant on-boarding. The registration
service makes use of the API Gateway Resource Policies to authenticate
against the User and Tenant Management services. This would then
invoke the user management service to create a new tenant user.

2. USER MANAGEMENT
The tenant would be provisioned into the user pool dedicated to the
tier selected by the user at registration, for this we would use Amazon
Cognito as our identity provider. Other tiers would share a common
user pool but are assigned different Cognito groups within that single
user pool. The Tenant Id and user role are stored as a custom claim
inside Cognito. Using Amazon IAM a role would be used for the Lambda
function to on-board the tenant.

When thinking of moving towards a SaaS delivery mode, a key area to
consider is how new tenants will onboard onto the product. Making the tenant
onboarding process seamless not only increases customer satisfaction, but can
lead to better product adoption, where free tiers / trials exist.

mailto:info%40rebura.com?subject=
http://www.rebura.com
https://www.linkedin.com/company/rebura-ltd./

GET STARTED TODAY E info@rebura.com W www.rebura.com Follow us on LinkedIn

3. TENANT MANAGEMENT
The Tenant Management will look to store the tenant details, which includes
the tenant name, generated tenant universally unique identifier (UUID), tenant
description and settings inside of the managed service Amazon DynamoDB. Once
this is done a DynamoDB stream initiates the downstream Lambda function to
build the tenant infrastructure.

4. TENANT PROVISIONING
The last part of the process is the provisioning service which invokes the tenant
pipeline to provision the specific infrastructure. The Lambda function acts based
on the received stream from the DynamoDB which in this case is an INSERT
event. Using the stream’s NewImage section, this invokes the CloudFormation to
create a new tenant infrastructure using the template stored in an S3 bucket. The
CloudFormation creates the tenant infrastructure based on the template and input
parameters then kicks off the provisioning of the application services using AWS
CodePipeline and AWS CodeBuild to deploy the tenant’s resources. The tenant
isolation security policies are applied at the network and data level. The AWS
CodePipeline is used to manage the deployment of the application services using
a CI/CD approach, when the code is merged to the main branch it will trigger
automatically to build, source and deploy the services. Each tenant infrastructure
setup would include a CloudWatch alarm, billing alarm and an alarm event.

CONCLUSION
Overall, onboarding tenants on AWS can result in a more efficient,
cost-effective, and secure environment that benefits both tenants
and the hosting organisation. This will enable them to focus
on their core competencies and deliver better services to their
customers. Using an automated, repeatable process to introduce
new tenants into your system as well as including the provisioning
of infrastructure, isolation polices, billing and any tenant
configuration will reduce friction which promotes operational

SEAMLESS TENANT ONBOARDING USING AWS

efficiency and organisational agility.
AWS offers several benefits for businesses
and organisations, especially those that
provide software-as-a-service (SaaS)
or multi-tenant applications.

mailto:info%40rebura.com?subject=
http://www.rebura.com
https://www.linkedin.com/company/rebura-ltd./

