
SOLVING FOR NOISY NEIGHBOUR
PROBLEMS IN DATABASES USING AWS

GET STARTED TODAY E info@rebura.com W www.rebura.com Follow us on LinkedIn

A noisy neighbour is a tenant
whose activity negatively affects
the performance and resources
available to other tenants in a SaaS
environment. The root cause of
this issue is shared components—
be that compute, storage, licenses,
etc. Depending on the architecture
model (silo, pool or bridged), the
risk of noisy neighbours changes. In
a truly siloed model there is no risk
as each tenant is given a dedicated
environment with no (direct or
indirect) dependence on other
tenants. Shared environments pose
the greatest risk of noisy neighbours
as resources are shared between
tenants, making the performance
for one tenant directly dependent
on the activity of the other tenants.

Noisy neighbours are a broad topic
in SaaS, relevant to just about
every layer of a service’s stack. This
article focuses on how the problem
manifests itself in databases and
what solutions can be approached.

1. ABSORB
It was mentioned previously that part of the cause of a noisy neighbour is
limited resources. This is true insofar as a resource (or its capacity) is static.
A common method of handling a system under variable load is automated
scaling—effectively removing capacity limits (to a certain extent).

Increasing system capacity under increased load can be thought of as the
system absorbing the effect of the noisy tenant.

Database performance can scale with increased load along 2 dimensions—
vertical and horizontal. Put simply, vertical scaling means upgrading
hardware (increasing CPU, memory) and horizontal means adding more
servers/instances.

Amazon RDS provides a few avenues for scaling. For read-heavy workloads,
read replicas are the traditional approach—an example of horizontal
scaling. Vertical scaling is achieved by opting for instances with higher
specifications. Aurora Serverless V2 is a more dynamic approach to scaling
along the vertical and horizontal dimensions, with the benefit of reduced
operational overhead.

DynamoDB offers autoscaling functionality through scaling policies on
tables and global secondary indexes. Write and read capacity can be scaled
differently and provisioned capacity is supported.

Scaling resources when a tenant imposes disproportionate load on the
system has the advantage that tenants (including the offender) are none-the-
wiser, however, it means that the SaaS provider generally absorbs the cost as
well. It is also true that resources cannot scale infinitely in the real world and
limits (be those cost, performance, capacity) will inevitably be reached.

Databases here refer to relational
and non-relational databases. In
particular, this article will look at RDS-
managed databases (e.g., RDS for
PostgreSQL) and DynamoDB.

Four approaches are presented:
1. Absorb
2. Limit and Throttle
3. Optimise
4. Offload

In the first 3 we assume that
a completely shared (pooled)
database is implemented. Given this
assumption, the root cause of a noisy
neighbour becomes the activity of the
noisy tenant combined with limited
resources. The 4th incorporates a
bridged architectural pattern.

Each approach has many designs
and strategies for its implementation.
AWS-centric strategies are mentioned
but the approaches are agnostic of
any service provider.

mailto:info%40rebura.com?subject=
http://www.rebura.com
https://www.linkedin.com/company/rebura-ltd./

CONCLUSION
Noisy neighbour problems will always be a
concern when operating a shared, multi-tenant
environment. There is no one-size-fits-all
solution, and SaaS providers must judge their
design and approach not only on a technical
ground, but also commercial. The strategies
discussed here have ramifications for pricing
models, quality of service, operating cost and
technical complexity.

GET STARTED TODAY E info@rebura.com W www.rebura.com Follow us on LinkedIn

2. LIMIT AND THROTTLE
Another component to the cause of noisy
neighbours is the activity of a noisy tenant.
Without absorbing the load by auto-scaling,
our attention can be placed on addressing
the activity of the tenant.

Limits can be imposed on tenants through
usage quotas or rate limits. This is
commonly done at the API level. Amazon
API Gateway provides the usage plan
feature which allows SaaS providers to place
rate and quota limitations on requests.
These are configurable per tenant, enabling
limits on a per-tenant basis. As this feature
sits at the API level, the SaaS provider must
determine some relationship between API
usage and database load. The data needed
for this is available through CloudWatch
metrics, database log streams and RDS
Performance Insights. AWS X-Ray can be
implemented to provide a coherent view of
an API request through to database query.

Limits can be related to tenant tiers in the
SaaS pricing model, giving tenants visibility
of their allowances and the SaaS provider a
way of scaling platform costs with revenue.

3. OPTIMISE
Up until now we have taken 2 components (tenant activity
and limited resources) of the root cause of noisy neighbours
and alternately held one constant and solved for the other.
This section presents an approach to noisy neighbour which
addresses neither but can help a SaaS provider minimise the
likelihood of a noisy neighbour event occurring. This involves
any way of optimising the existing system. Generally this
means optimising the data model, or the code which performs
queries on the database.

A good practice in any case is to optimise database operations
with respect to the limiting factors - commonly CPU and
memory. This can include restructuring of data, indexing, or
query optimisation. Query optimisation involves considerable
monitoring on the database. Amazon RDS Performance Insights
enables a SaaS provider to assess database load, allowing the
SaaS provider to identify resource-intensive queries. These
queries can then be investigated further and appropriately
optimised. Global secondary indexes in DynamoDB can be an
effective way of reducing heavier scan operations.

Caching is an approach with a similar effect to query
optimisation when applied to resourceintensive queries.
This is most appropriate when queries to the database are
repeated often. Caching can often be performed at a higher
level (e.g. REST API) than the database as well, eliminating
any load on the database for certain access patterns.

4. OFFLOAD
The final approach in this article follows a similar
pattern to the first in that the noisy tenant’s load
is absorbed by the SaaS platform. However, this
is not achieved by a traditional scaling technique.
Instead the architecture of the SaaS platform
changes from a pooled to a bridged model.

The noisy tenant is offloaded to a dedicated
database instance, thereby relieving the shared
database of the load. Similar to the auto-scaling
approach, this has a large cost implication and is
best suited to a tiered pricing model, which takes
into account the increased operating costs of a
dedicated database.

SOLVING FOR NOISY NEIGHBOUR
PROBLEMS IN DATABASES USING AWS

mailto:info%40rebura.com?subject=
http://www.rebura.com
https://www.linkedin.com/company/rebura-ltd./

